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Sine- 

Motion of a driven and heavily damped sine-Gordon chain with a low density 
of kinks and tight coupling between particles is controlled by the nucleation and 
subsequent annihilation of pairs of kinks and antikinks. We show that in the 
steady state there are no spatial correlations between kinks or between kinks and 
antikinks. For a given number of kinks and antikinks all geometrical distribu- 
tions are equally alike, as in equilibrium. A master equation for the probability 
distribution for the number of kinks on a finite chain is solved, and substantiates 
the physical reasoning in previous work. The probability distribution character- 
izing the spread along the direction of particle motion of a finite chain in 
equilibrium as well as in the driven overdamped case is derived by simple 
combinatorial considerations. The spatial spread of a driven chain in the 
thermodynamic limit does not approach a steady state; a given particle followed 
in time deviates as t 1/2 from its average forced motion. This result follows from 
the hydrodynamic equations for the dilute kink gas. Comparison is made with 
other recent results. 

KEY WORDS: Sine-Gordon soliton gas; nucleation; annihilation; master 
equation; hydrodynamic equations; fluctuations; correlations. 

1. I N T R O D U C T I O N  

In  this p a p e r  we s tudy  the  s ta t is t ical  p rope r t i e s  of  the  k i n k - a n t i k i n k  gas of  

the  s i n e - G o r d o n  e q u a t i o n ,  wi th  emphas i s  on  the  f o r c e d  a n d  o v e r d a m p e d  

case,  t h o u g h  s o m e  of  o u r  resul ts  a re  m o r e  genera l .  O n e  poss ib le  r ea l i za t ion  

consis ts  of  a r ing  of  t o r s i o n - c o u p l e d  p e n d u l u m s  in a g r av i t a t i ona l  po t en t i a l  

V ( 1 -  c o s 0 ) ,  a n d  also u n d e r  the  ac t i on  of  an  ex te rna l  t o r q u e  F.  In  the  
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overdamped case the time evolution of the displacement O(x, t) of the 
pendulums is given by (1'2) 

T~O/~t  = - VsinO + F +  x~20/ax2 + ~ (1) 

where Y is the damping constant and x is proportional to the coupling 
between adjacent pendulums. The system is connected to a thermal reser- 
voir giving rise to fluctuations with a strength 

(~(x,  t)~(x', t')) = 2 y k T S ( t  - t') 8(x  - x') (2) 

Equations (1) and (2) describe other physical systems, (3'4) such as the 
Josephson junction transmission line (5'6) with negligible junction capaci- 
tance, or a chain of oscillators with phase coupling between adjacent 
oscillators and synchronized externally by a signal differing from the 
natural oscillator frequency. (7) Recent conference proceedings (3'4) demon- 
strate many other physical applications of the sine-Gordon equation, 
though for many of these the inertial term may not be neglected as we have 
done in Eq. (1). 

For IFI < V the potential V(1 - cos0) - FO possesses local minima at 
0, + 2~rn. At low temperatures the statistical mechanical properties in this 
field range are determined by two elementary types of excitations(S): 
small-amplitude relaxation modes ("overdamped phonons") around the 
stationary uniform states 0s, and large-amplitude excitations (kinks and 
antikinks) describing the transition from one Peierls valley at 0~ to an 
adjacent one at 0, __ 2~r. We adopt the notions "Peierls valley" and "Peierls 
hill" from the dislocation literature, (8) the field in which the statistical 
mechanics of solitons was treated first. 

We will call a transition from one Peierls valley to an adjacent one a 
kink if the first spatial derivative is positive, and an antikink if the first 
spatial derivative is negative. As a linguistic simplification, we will, on 
occasion, use the expression "kink" as a generic term, including both types 
of transitions. Under the action of a steady deterministic field, a kink 
travels with constant velocity (2) - u ( F )  in the presence of damping (Fig. 
1), and an antikink travels with velocity u(F) to the right. In the absence of 
a force the kink is at rest. (In contrast the kinks of the undamped 
sine-Gordon equation can travel with any fixed velocity smaller than the 
velocity of sound. The velocity for F--O,  V--0  depends on the order in 
which the limits F ~  O, 3' ~ 0 are taken.) 

In this paper we study the statistical properties of a dilute kink gas. In 
the overdamped case and in the low-temperature regime, the kinematics of 
this gas is governed by two processes. If a kink and an antikink collide, 
they will annihilate (recombine). There is an attractive force between them; 
and since excess kinetic energy is immediately removed by the damping, 
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Fig. l. Propagation velocity of the driven kinks. A kink travels with velocity - u, i.e., toward 
negative x values; an antikink travels with velocity u toward positive x values. In the reduced 
variables u/u o, F~ V the curve shown is universal, u0 = (•V)1/2/7. Corrected version of figure 

in Ref. 2. 

they cannot separate again. The complementary process to the recombina- 
tion is the nucleation of a pair, consisting of a kink and an antikink. (2's) 
Fluctuations out of the uniform state 0, which are large enough to over- 
come a critical activation energy barrier (2) will lead to a new kink-antikink 
pair which, under the action of the applied field, are then driven apart. 
Throughout the paper, we assume that kT is small compared to the 
activation energy barrier. 

We treat the kinks as classical point-like particles interacting only via 
short-range forces. Because the interaction between kinks decays exponen- 
tially over distances larger than the kink width, (8'9) such a treatment is 
appropriate if one considers a length scale which is large compared to the 
width of a kink. 

In Section 2, we show that there are no spatial correlations between 
kinks and antikinks in the steady state. It is found that all geometrical 
distributions of kinks and antikinks are equally likely. We derive and solve 
a master equation for the probability distribution for the total number of 
kinks. We discuss the validity of balance equations which have been 
invoked (2) in the determination of the mean angular velocity (OO(F)/~t) 
for the system of Eqs. (1) and (2). The determination of this velocity is 
equivalent to the determination of crystal growth rates (~~ for a one- 
dimensional crystal surface. In Section 3, we derive hydrodynamic equa- 
tions describing the driven and overdamped kink gas, and study the 
correlation functions derivable from these equations. In Section 4 we derive 
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the probability distribution characterizing the spatial spread of the finite 
chain along the direction of particle motion. This section is more general 
than the preceding ones because it covers the equilibrium as well as the 
driven case, the overdamped as well as the underdamped case. In the last 
section, we discuss the relation of our results to earlier work. 

2. NUCLEATION AND RECOMBINATION OF KINKS AND 
ANTIKINKS 

2.1. Formulation of the Problem 

Figure 2a illustrates the distribution of the angular displacement 8(x, t) 
of a typical member of the ensemble over the valleys of the potential 
V(1 - cos 0 ) -  F8 at a given instant of time. At low temperature the kinks 
are far apart compared to the width of a kink and most of the chain will lie 
near the potential minima at O, + 2~rn. Segments of the chain lying in 
different Peierls valleys are connected by kinks and antikinks. The time 
evolution of this configuration occurs through motion of the kinks to the 
left with speed - u(F) and motion of the antikinks to the right with speed 
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Fig. 2. (a) Typical configuration of the displacement field O(x, t) at a given instant of time. 
Long segments of the chain lying in a Peierls valley (thin solid lines) are connected by kinks 
and antikinks which span the Peierls hills (broken solid lines). (b) One-dimensional representa- 
tion of the configuration of Fig. 2a through the kink and antikink positions with arrows 
indicating the sign of their propagation velocity, in the presence of a force, F > 0, leading to 
positive values of the ensemble average of ~O/~t. 
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u(F). Noise will cause Brownian motion of the kinks away from the 
deterministic path described by u(F). We are concerned with the long-term 
and large-amplitude displacements, and therefore for sufficiently large F 
the diffusive motion of the kinks can be ignored. The deviation from the 
deterministic path must still be small when the kink is annihilated at its 
next encounter with an antikink. The condition for this will be discussed in 
Section 3. 

To describe the kinematics of such a kink gas, Seeger and Schiller (s) 
proposed balance equations describing the birth and death of kinks specify- 
ing separately the kink population spanning every Peierls hill. This leads to 
an infinite set of coupled nonlinear rate equations, which would be tracta- 
ble only numerically on a computer. As we shall see, however, such a 
detailed description turns out not to be necessary. If one considers the 
kinks as point-like particles interacting only via short-range forces, each 
configuration can be represented in a one-dimensional space (Fig. 2b). The 
mapping from Fig. 2b to Fig. 2a is one to one. On a length scale large 
compared to the kink width both figures contain the same information. 

We will show in this section that if we consider all the kinks and 
antikinks simultaneously, without any attempt to classify them by the 
Peierls hills they span, they exhibit no correlation in the steady state; all 
geometrical arrangements are equally likely. This simplicity is lost if we 
consider only the kinks and antikinks spanning a given Peierls hill. This 
gives rise to the complex equations discussed by Seeger and Schiller. (8~ A 
particular antikink, for example, will find a kink spanning the same hill, 
and capable of annihilating it, with high probability in its immediate 
vicinity. Farther away, however, the chain will very likely have "diffused" 
away by a number of Peierls valleys, and the probability for finding a kink 
spanning the original hill is much less. 

A configuration of an ensemble member consisting of N kinks and N 
antikinks distributed along a ring of length L is fully specified by the 
positions of the kinks x~, r -- 1 . . . . .  N and the positions of the antikinks Ys, 
s = 1 . . . . .  N. Our main aim is to show that the stationary distribution 
p(C~)  of the configurations 

= { . . . .  , x N ;  . . . , y N  ) (3) 
is uniform, e.g., independent of the values assigned to the coordinates 
xl . . . . .  X,v, Yl . . . . .  YN" We will search for a stationary distribution p(C~v) 
of the form 

p(C,v ) = ( 1 / V N  )PN (4) 

where V w is the volume of the phase space allowed for the configuration 
CN, and PN is the probability of finding N kinks in the system. 
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Why can we expect a uniform stationary distribution? Consider for a 
moment a gas consisting of N particles traveling with velocity - u  and N 
particles traveling with the velocity + u. Suppose these particles do not 
interact and pass through each other. One stationary distribution for this 
gas is the uniform distribution, giving equal weight to all possible spatial 
variations of the particle positions. If we do not invoke annihilation or 
nucleation, i.e., permit no transitions between the N-particle gas and the 
(N + 1)-particle gas, then we can still assign these two classes any relative 
probability. Now let us, however, admit that we are dealing with kinks and 
allow transitions from the (N + 1)-kink gas to the N-kink gas, and vice 
versa. Can we assign the relative overall populations Pu of Eq. (4) in such a 
way that the presumed uniform state specified in Eq. (4) will maintain itself 
in time? If we can find such a solution to the master equation it must be a 
unique solution, since the master equation allows nonunique steady states 
only when two or more parts of the phase space are mutually inaccessible, 
i.e., not connected by any sequence of allowed transitions. (~2~ Consider first 
the annihilation process. It requires that a kink and an antikink are about 
to run into each other. But, under the assumption of Eq. (4), this wilt occur 
with equal probability for all locations of the annihilation and for all 
possible assignments of the remaining N kinks and N antikinks, and will 
thus map the uniform distribution which existed on the space of N + 1 
kinks into the uniform distribution over the space of N kinks, Similarly the 
nucleation events taking us from the space with N kinks to that with N + 1 
occur with equal probability for all possible locations of the nucleation 
event, and with equal probability for all possible assignments of the N 
initial kinks and N initial antikinks. Thus the nucleation events predicted 
from Eq. (4) arising in the space of N kinks populate the space of N + 1 
kinks uniformly, except for the obvious restriction that the pair that has just 
been generated is just beginning to travel apart. Therefore, if we choose pu 
and PN+I correctly, the annihilation rate and the nucleation rate will not 
only balance after integration over the detailed geometrical assignments, 
but in a more microscopic way, so that the generation events appear as if 
on the average the kinks and antikinks had passed through each other 
without annihilation. Thus the uniform distribution assumed in Eq. (4) will 
be preserved. 

We will now repeat in analytical form the material which has just been 
presented by verbal arguments. In Section 2.2, we derive the configuration- 
space master equation for the probabilities p(CN). In Section 2.3, we then 
deduce the master equation for the probabilities Pu and obtain its station- 
ary solution. Finally, in Section 2.4 we show that the configuration-space 
master equation forp(CN) has a uniform stationary solution of the form (4) 
with Pu given by the stationary solution of the master equation for p~. 
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2.2. Master Equation for the Probability of the Phase Space 
Configurations 

Permutations of the kink positions x, do not lead to new configura- 
tions CN, nor do permutations of the antikink positionsy s. Therefore, the x r 
and Ys may be considered ordered such that the allowed phase space is 

~']N = ( 0  < X |  < X 2 < " " �9 < X N < L; 0 < Y l  < Y 2  < " " " < Y N  < L} 

(5) 
with a volume 

Vu = V(~2N) = L2N/(N!)2 (6) 

Any integration o v e r  ~U may be replaced by an integration of the 
symmetrized integrand o v e r  L 2N and multiplication of the result by (N !)-2, 

1 fL2ufsym(CN )dxNdy~ )dx  dy N- (N!)2 (7) 

The nucleation affects the probability p(Cu) for the configuration CN in 
two ways: A nucleation event at t = 0 in the configuration CN-~ leads at 
t = 0 + to a new configuration C N with an extra pair of kink coordinates 
only slightly separated, x, -Ys  -- - 0§ A nucleation event in the configura- 
tion CN leads to a new configuration CN+~. We obtain 

Op(CN)[ = j ~ , p ( C  N -  {Xr, Ys))~(Xr-Ys +O+)-jLp(CN) (8) 
a t nuc rs 

where j is the nucleation rate per unit time and length calculated in Ref. 2. 
In an interval dt a kink-antikink pair will annihilate if the pair 

members are within a distance 2u dt. Recombinations (annihilations) in the 
configuration Cu+ l will increase the probability for one of the configura- 
tions C~, whereas annihilations in the configuration CN will decrease this 
probability. Recombinations supply an additional contribution to 3p/3t 

ap( CN too = ( p(  + 
{ 

- ~ p(CN ) 6(x, - y~ - 0 + )] (9) 
rs A 

The third process which we have to take into account is the determinis- 
tic motion of the kinks 

p(CN ) (10) 
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The evolution of the probability distribution is determined by all three 
processes 

~?(cN ) ,o,- Op(CN) nuc ~p(G ) ,oo ~?(c~) [ (11) 
3 t 3 t + 3~--~-  + O ~  drift 

2.3. Master Equation for PN 

We use Eq. (11) to derive a master equation for the probability 
distribution PN containing as stochastic variable only the total number N of 
kinks (equal to the total number of antikinks) in our system. The distribu- 
tion function PN is found by integration of p(CN) over the phase space ~U 

pN=f~Np(CN)dxUdyN 1 :L2Ne(CN)dxUdyU (12) 
(N!)  2 

We find from (8) 

and from (9) 

dtgN rec ~-- dt 

dt nuc= JL(pN- I - PN) (13) 

2u[(N + 1)2(3(x--y))u+lpN+l -- N2(8(  x --Y)>NPN l (14) 

whereas the deterministic motion leaves the distribution over N unchanged: 

NpN drift at = 0 (15) 

Assuming at the moment a uniform distribution p(Cu) = PN/VN, with V N 
defined by Eq. (6), we obtain 

1 

1 (16) _ 1 1 ~ )  -~ , ' ' W C a ~ " " ' N P ' C N ' 8 ' X ' - - Y ' ) - -  
N 2 Pu r s ~  L 

and therefore for (14) 

a/,N 
dt rec = - ~  [(N + 1)2pm+,- N~N ] (17) 

Under the assumption of a uniform distribution p(Cu) , we thus find 
the macroscopic master equation 

2u - N2"N j dPN --jL[pN-I-?N] + ~ [(N+ l)ZpN+ (18) dt 1 
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Its stationary solution is found by requiring that the nucleation rate is equal 
to the annihilation rate (detailed balance) 

Ljp N = ( 2 u / L ) ( N  + 1)2pN+, (19) 

and therefore 
_ 1 j L  2 ~ N 

PN (N!) 2 ( ~  } P0 (20) 

This solution is also found by considering the recursion relation obtained 
by setting the right-hand side of (18) equal to zero. Normalization of the 
distribution 

1=  ~ pN=PO =polo(X) (21) 
N = 0  = 0  (N!)2 

determimes Po. Here Io(x ) is the modified Bessel function of zeroth order 
with argument x = (2jL2/u)  1/2. The characteristic function is found to be 

Io( xe'q/2) 
Co(q) = ~ eJqNpN -- (22) 

N Io(x) 

and will be used to determine the moments of the stationary distribution. 

2.4. The Stationary Uniform Solution of the Master Equation for 
p(C~) 

Now we show that p(Cu)  = P N / V u  with/ON given by (20) is indeed a 
stationary solution of (11). Introducing the uniform distribution Eq. (4) into 
(13)-(15) yields 

~t = j ~  , .~ - -:L~ 
(23) 

hUE 

~p( CN ) 
ree PN +, 2U PU __ = 2uL ~ 8(xr Ys) (24) Ot Vu+, Vu 

and 

whence 

0p(CN) 
Ot 

op( cN ~n, = ~ (25) 

L 2 1 _~(N+ --jLpN I 
( N +  1) 2 VN+, I 1)2pU+' 

L 1 [ 2 u . , 2  1 
N 2 V N --LIV-PN--jLpN-'  ~rS (Xr - -Ys )  = 0  (26) 
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for PN satisfying Eq. (19). Thus the master equation has indeed a uniform 
stationary distribution. It should be noted, however, that the second term 
on the right-hand side of (26) gives rise to a nonuniformity if PN is not 
taken as the stationary distribution. In other words, the only distribution 
which is spatially uniform at all times is the stationary distribution. Thus, 
the macroscopic master equation (18) is strictly justified only for the 
stationary distribution, and any conclusions drawn from it concerning the 
approach to equilibrium should be taken with reservation. 

2.5. Growth Rates 

The average number of kinks in the stationary state is found with the 
help of Eq. (22) to be 

( N ) -  1 3, _ (  L2j']'/2 Ii(x) (27) 
i 3q 1 2u ] lo(x ) 

where Ii(x ) is the modified Bessel function of first order. For the second 
moment of the stationary distribution, Eq. (20), we find 

( N z) = - 32eo/ Oq2 = jC 2 /2u (28) 

If we introduce the kink density m and antikink density n per unit length, 
we find for the variance for large L 

( m  2) _ (m)2 = @2) _ @)2 = (1/2L)no (29) 

where (m)  = (n )  = ( N ) / L ,  and n o is the stationary density for the infi- 
nitely long sample 

no = ( j /2u)  1/2= lim (n)  (30) 
L-4m 

Equation (29) is a well-corroborated result in electron-hole statistics in 
semiconductors.(13,14) The connection of our problem to this semiconductor 
topic will become even more apparent in the following sections. 

The rate at which (O0/Ot) increases is of special interest. (1'2) Each 
kink and antikink passing a fixed point x along the ring brings an increase 
of 2~r in O(x). Therefore, we can express (O0/Ot) in terms of the kink 
density and the velocity u as 

(O0/~t) = 2~ru((n) + (m))  (31) 

According to Eq. (27) we find 

(O0 /~ t )  = 2~r(2ju)l /2I i (x) /  Io(x) (32) 

Two limits are of interest. If the ring is short (the kink velocity u high) a 
kink pair traverses the ring and annihilates before the next pair is created. 
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In this case the growth rate is simply determined by the nucleation rate j .  
We find in this limit (jLZ/2u << 1) 

<80/3t> = 2~rjL(l - �89 + . . .  (33) 

In the opposite limit (jL2/2u >> l) we find 

(O0/Ot> = 2~r(2ju)'/2[1 - (1/2L)(u/2j)  '/2] + . . .  (34) 

In lowest order both results (33) and (34) are in agreement with results from 
the theory of one-dimensional crystal growth, ~1~ and confirm results 
derived via simple balance equations. ~2'11) Note that the length dependence 
of (OO/Ot> is of importance if one wishes to determine activation energies 
through the measurement of the growth rate. ~1~ Becausej~e -aE~/kr we 
find (30/Ot>..-.e -AE~/kT in the limit jL2/2u<< 1, whereas in the limit 
jL2/2u >> 1 we obtain (~O/Ot>~e -aEN/2kr. Here AE N is the activation 
energy barrier ~z) for the nucleation of a kink-antikink pair. 

3. HYDRODYNAMICS OF THE DRIVEN KINK GAS 

The configuration-space master equation discussed in the previous 
section describes the kink dynamics on a length scale large compared to the 
kink width. For phenomena occurring on a length scale large compared to 
the average distance between kinks, it is more convenient to go over to a 
hydrodynamic description, averaging the microscopic quantities over an 
interval AR which is small on the macroscopic length, but still contains 
many kinks. Therefore, we introduce the local densities of the kinks and 
antikinks 

1 f~ dx E S [ x -  x,(,)] (35) m ( x ' t ) = - U R  R , 

1 ( d x ~ d [ x _ f l i ( t )  ] (36) n(x, t) = ~ aaR i 

respectively, as hydrodynamic variables. 

3.1. DerivaUon of the Hydrodynamic Equations 

For hydrodynamic states the ensemble averages of the hydrodynamic 
densities m(x,t) ,n(x, t)  agree with the ensemble averages of the micro- 
scopic densities, 

o~ 

(m(x , t )>= ~ ( d x U d y N ~ 6 [ x  - xi(t)]p(CN, t ) 
N~OJ~N i 

= ~ U(8(x  - X,)>NpN (37) 
N = 0  
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and similarly for (n (x ,  t)), where we have used (7). The subscript N in the 
far right-hand side of Eq. (37) denotes the average with respect to the 
N-particle probability p(CN, t). After some calculation we find from (11) 
the equations of motion for the averages 

O ( m ) / O t -  u ~ ( m ) / ~ x  = j -  2u~mn) (38) 

O(n~/~t + u a ( n ) / 3 x  = j  - 2 u ( m n )  (39) 

In the stationary and spatially uniform case we have ( m n )  = (n2) = j / 2 u  
in accordance with Eq. (28). 

3.2. Fluctuat ions 

If we rewrite Eqs. (38) and (39) as Langevin-type equations for the 
local densities m and n instead of their ensemble averages, we have to 
supplement these equations with stochastic forces q~m and ~n to allow for 
the fact that individual ensemble members can deviate from the ensemble 
average, 

Om/~t - u a m / ~ x  = j  - 2unto + 0,~ (40) 

~n/Ot + u~n /Ox  = j -  2unm + ~ (41) 

with (q,,~) --- (~,~ = 0. Similar equations have been studied by Brailsford (15) 
in connection with the theory of kinks in edge dislocations, and are also 
used to describe the electron-hole kinetics in semiconductors. (~6) 

The stochastic forces ~m,~, have two sources. One of these is the 
diffusive Brownian motion of the kinks away from the deterministic path, 
which was neglected in (11) and will also be neglected in this section. This 
is a good approximation as long as the distance l D, that a kink would 
diffuse during its lifetime �9 = (2un0)-1 is much smaller than the distance 
l u = uz = (2n0) -1 that it travels during this time z. With the diffusion 
constant D ~ i~kT of the kinks, where tt is their mobility, (2) we find 
l o ~-(D~-) t/2. In the Ohmic limit, u = /zF, and the ratio lD/ l  ~-~ 
( n o k T / F )  1/2 is small (2) if F >> nokT. If the diffusive motion of the kinks is 
neglected, the remaining noise arises entirely from the nucleation and 
recombination processes. In this case 0,, and q'n are totally correlated, 
e~m(X,t ) = ep,(x,t)= qJ(x, t). According to Section 2, the nucleation rate 
(Om/~t)nuc= (an~at) nuc consists of a sequence of statistically independent 
nucleation events ~i(x,  t) = 8(x - xi)8(t - ti) which are randomly distrib- 
uted in space and time. For (x, t) in the space-'time interval AR AT one has 

Ak Ak 

(I)nUC(x, l) = E r x' t) = ~ 8(X -- Xi)~(t - -  ti) (42) 
i = l  i=1 

where the events (x~,t~) are uniformly distributed in ARAT,  and their 
number Ak is Poisson distributed (t7) with mean ( A k ) = j A R A T .  The 
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average is 

1 (Ak) --j {(I)nUC(x'O) = { 2 ( I ) i ( x ' l ) ) -  ARAT (43) 
i 

as required, and the correlation function is 

(~nUC(x, t)qbnUC(x', t')> = (~'] f~i(X, t)f~i(X ,, t ' ) )  dr" ( 2 f~i( x '  t )~j(X,  t ' ) )  
i i~j  

_ 1 ( A k ) a ( x  - x ' ) a ( t  - t') 
A R A T  

1 ( A k ( A k -  1)) (44) 
+ (ARzXT)2 

if (x, t) and (x', t') are in the same interval AR A T, and 

@bnuc(x, t)qb"UC(x', t ')) = 1 ( ~ k ) ( A k ' )  (45) 
(AR A r)2 

if they are in different intervals. Since ( A k ( A k -  1) )=  (Ak) 2, both cases 
are represented by 

(r = j S ( x  - x ' ) d ( t  - t') +j2  (46) 

and one obtains for the correlation of the fluctuations ~""c = q~"U~(x, t) - j  

(q, nU~(x, t)~U~(X', t ')) = j 8(X -- X') 6(t -- t') (47) 

Consideration of the recombination rate q)re~(x, t) = (Om/Ot)  rec = (On/Ot) rec 
is similar but a little more subtle. First of all the recombination rate 
depends on the local densities of kinks and antikinks, and depends, 
therefore, in general on x and t. Additionally, while the nucleation process 
is stochastic, the recombination process is not-- i t  occurs when kinks and 
antikinks are driven into each other. We will study the fluctuations of small 
deviations of the densities 8 m ( x , t ) =  m ( x , t ) -  n o and 8n(x,  t ) =  n(x ,  t ) -  
no from the uniform stationary state in linear response (random phase 
approximation (~8)) to the stochastic force q'm = q~n = ~. In this approach it 
is sufficient to consider the stochastic force q~ which characterizes the 
unperturbed steady state. In Section 2 we have shown that in the steady 
state the kinks and antikinks are uncorrelated, and therefore the recombi- 
nation events are random in space and time. For (x, t) in the time interval 
b R A T  one has 

AI 

(Ilrec = - -  2 ~ ( X  - -  Xi)~(t  -- ti) ( 4 8 )  
i = 1  

Again AI is Poisson distributed with mean ( A l ) / A R A T = j  = 2un 2. One 
obtains therefore on the average 

(~r~(x,  t)) = - j  (49) 
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and the correlation 

((~ree(x,t)f~reC(x',tt)~ = j ~ ( x  -- x t )~( t  - -  t') + j2 (50) 

and hence for the fluctuations ~rer t) = Or~C(x, t) + j 

(~bree(x, t)d~reC(X', t ' ) )  = j 6 ( x  -- X') 8 ( t  -- t ') (51) 

Since the nucleation and recombination processes are statistically indepen- 
dent, one finds for the total fluctuation 

d~(X, t) = ~nUC(x, t) q- ~brec(x, t) (52) 

the correlation function 

(O(x ,  t)q,(x' ,  t ')~ = 2 j d ( x  - x ' ) 8 ( t  - t') (53) 

3.3. The Normal Modes of the Kink Gas 

To study the fluctuations of the kink gas it is convenient to discuss first 
the normal modes of Eqs. (40) and (41) describing the deviations from the 
stationary uniform state m 0 = n o = ( j / 2 u )  1/2. We linearize Eqs. (40) and 
(41) with respect to small perturbations 6n, Sm from the stationary state, 
neglecting the stochastic force ep. In view of the translational invariance in 
time and space, the perturbations can be taken to be of the form 

8 m ( x , t )  = ~mq~oe iqx-i~ 8 n ( x , t )  = ~nqwe iqx-i~t (54) 

The resulting eigenvalue problem leads to the characteristic equation A(q, 
o 0 = 0, where 

A(q, w) = - ~o 2 -- 4iuno~o + u2q 2 (55) 

The dispersion relation ~0(q) determined by A(q, o~) = 0 is 

~ol.2( q) = -- 2inou + ( uZq 2 - 4nZu2) ]/2 (56) 

For q<<2n0, i.e., in the whole range in which the hydrodynamic 
description is valid, we find a branch of diffusive modes 

wl(q)  = - i D , q  2, Dp = u / 4 n  o (57) 

and a branch of relaxation-type modes 

r = - 4 i n o u  + iDoq 2 (58) 

The slow branch of modes (57) arises because the difference between the 
numbers of kinks and antikinks obeys a conservation law giving rise to a 
continuity equation 

3p lOt  + divjo = 0, Jo = - u ( m  + n) (59) 
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found by subtracting Eq. (41) from (40). Here, O = m - n is the difference 
of the kink and antikink densities. The long-wavelength perturbations in 0 
can decay only via diffusion, with diffusion constant Dp = u / 4 n  o. The 
second branch of modes (58) exhibits a nonvanishing relaxation rate, even 
at q = 0, and describes, in the long-wavelength limit, the behavior of 
perturbations of the total local kink density ~ = m + n. 

The densities p and ~/ are directly related to the sine-Gordon field 
O(x, t) averaged over a macroscopically small interval AR in the same way 
as (35) and (36). Denoting this coarse-grained sine-Gordon field in this 
section also by O(x, t), one has 

OO(x, t ) / 3 x  = 27r(m -- n) ---- 2~rp (60) 

and ]compare also Eq. (31)] 

O0(x, Q / a t  = 2~ru(m + n) = 2~run (61) 

where the conservation law (59) guarantees the compatibility of these 
equations. For later use note that our hydrodynamic equations [(40), 
(41)] are equivalent to the equation 

for the coarse-grained displacement field O(x, t). 

3.4. Correlation FuneUons o! the Kink Gas 

In linear response to the fluctuation force q~ we obtain from Eqs. (40) 

. r - -  q u  

6mq,o = '  ~ q~q,o (63) 

. o~ + qu 
~nqo ~ = 1 - -  eOq.~ (64) A(q,,o) 

from which we can calculate the fluctuation spectra 

(8mq,o8m~,,) = S " ' ( q , o ~ ) d ( q -  q ' ) d ( t o -  oY) (65) 

and correspondingly for the other quantities. The fluctuation spectra for 
p =  n -  m a n d s / =  n + m 

S PP(q, ~o) = 8q2u~/ (66) 
(~02 - q2u2)2 + 16w2uZn~ 

srm(q,w) = 8~0z/ (67) 
( o~ 2 - q2u2) 2 + 16~02u2n02 

and (41) 
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satisfy ~02SPP(q,~o)- q2uZSnn(q, oo)= 0 as a result of the conservation law 
(59). For q << n o we obtain two Lorentzian-type contributions correspond- 
ing, respectively, to the two types of long-wavelength modes [Eqs. (57) and 
(58)] 

( q2 q2 ) 

S~176 = u w2 + D2q4 ~~ 2 + 16n2u2 (68) 

The diffusion part has a width 2Dpq 2 and a height u/DZq 2, giving rise to a 
weight (width times height) 2 u / D  o = 8n0, whereas the relaxation part has 
width 8nou and negative weight q2/2no << 8n 0. For the total density fluctua- 
tions the spectrum becomes 

S "n (q, o~) 1 D~q 4 8j 
= + ( 6 9 )  

u r z + O2q 4 r 2 + 16n2u 2 

with the weights q2/2no and 8n 0 >> q2/2n o. The qualitative behavior of this 
spectrum is shown in Fig. 3a. The fluctuation spectrum of the coarse- 
grained sine-Gordon field fluctuations 60 = 0 -  (0 )  is found from (67) 
with the relation (61), yielding 60q,~ = i(2~ru/oa)6%~,. Here ( ) denotes the 
ensemble average. Later in the paper we shall also refer to the space 
average, which will be denoted by ( )R. We find a fluctuation spectrum 

S~176 4~r2u ~~ 2 + D2oq 4 ~o 2 + 16n~u 2 

with a weight 327r2no/q 2 for the diffusion peak and - 2 ~ 2 / n o  for the 
relaxation part. The main contribution of the kinks to the peak at ~o -- 0 is 
due to the diffusion modes, as shown in Fig. 3b. It should be noted that the 
two peaks of Eq. (70) exist in addition to other contributions to S ~176 arising 
from the small disturbances within a Peierls valley. 

Previous calculations (19-22) of the dynamic structure factor of systems 
exhibiting solitons refer to the undriven case. In the 0 4 system (~9-2~ each 
kink has two antikinks as neighbors. This has the consequence that p(x, t) 
= 0 on a hydrodynamic scale. A comparison of the earlier results (19-20 
with Eq. (70) is therefore not meaningful. The sin 0 system has been studied 
numerically by Schneider and Stoll. (22) They investigated the kink' gas in 
the relativistic limit (compared to the velocity of sound) and found that the 
dominant contribution to the low-frequency and long-wavelength part of 
the dynamic structure factor is due to propagating hydrodynamic modes 
o~--vq, in contrast to diffusive hydrodynamic modes ~0 = - iDpq  2 found 
by us in the overdamped case. 

We will now study the mean square difference in displacement ([ g(x, 
Xo; 0] 2) between two particles x - x 0 apart in a finite ring chain of length 
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S"/T/(q ,w) 

(a) 47r u / D,~ q 

S0O (q,w) 

(b) 

2Dpq 2 ~ 

,J 
o 

~ o / 4 u %  

2Dpq2 ~ ~ [ 
i 

I I I P ~ ' 
- I  - I / 2  0 I / 2  I I/2 

w / 4 u n  o 

Fig. 3. (a) Low-frequency and long-wavelength fluctuation spectrum of the total kink and 
antikink density for fixed q as a function of o~/4un o. Here, 4un o is the half-width of the 
relaxation part of the spectrum. (b) Low-frequency and long-wavelength fluctuation spectrum 
of the coarse-grained displacement field. (In both figures q = no/2 at the limit of validity of 
our approximations. At smaller q values, the diffusion part is too sharp to resolve in a casual 
illustration.) 

L. The  difference g(x, x o ; t) is defined by  

g(x,  x o ; t )  ------- O(x, t) - O(x o, t) (71) 

and  m a y  be expressed in terms of the Fourier  components  6Oqo~ as 

g(X, Xo;t ) = (2~rL) - l /2~  f do~6Oq.o,e-i'~'(e iq; ' -  e iqox~ (72) 

where q. = (2~r/L)n, and the summat ion  extends over  all n ~ 0. This yields 

2 ~ (&osOO(q. ,co~sin2q. (x_  Xo) (73) <I g (X 'Xo ; t ) ]2>  = "-~ n=/=O..I " 2 

For  large x it is sufficient to take the first term of Eq. (68) into account .  
Because of the translat ional  invariance of the system, ([g(X, Xo; 0] 2) de- 
pends only on the separat ion x - x 0 of the two particles. For  convenience,  
we chose x 0 = 0 ( =  L). After  integrat ion over  ~o one finds 

( [  g(x,  O; t ) ] 2 ) =  4 L  ~ . ~ o  ~ sin2[ 7r( L )n ]  (74) 

which yields 

( [  g (x ,O;  0 ]  2) = (8~r2/L)nox(L - x) (75) 

where we have used D o = u /4n  o as defined in Eq. (57). Thus ( g 2 )  remains  
bounded  for a finite sample.  The  m a x i m u m  value occurs at x = L / 2 ,  where 
we find (gZ)  = 2r L. In  the limit of an infinite sample  (L  ~ oe ,x  fixed) 
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Eq. (75) becomes 

<[ g ( x , 0 ;  t)]2> = 8qT"2n0 x (76) 

The results (75), (76) will be rederived in the next section by a purely 
combinatorial approach. 

Next we study the deviation of a particle from the center of gravity of 
its chain and from the ensemble average motion of the chain. This 
distinction is relevant only in a chain of finite length L, where the center of 
gravity exhibits diffusive motion around the ensemble average motion 
(O(x, t)> = 27ru<~l>t calculated in Ref. 2. The center of gravity of the chain 
is given by the spatial average (O(x, t)> R = (1/L)fO(x, t)dx of the displace- 
ment field. To find the deviation of the displacement field from the center 
of gravity hR(x,t)= O(x,t)-(O(x,t)> R we subtract the spatial average 
< g(X, 0; t)> R from g(x, 0; t). We find 

- io~t iq x hn(x,t ) = (2~rL) -1/2 ~ fdw6Oq,~e e " (77) 
n~0 ~ 

and the mean square amplitude of the difference AhR(x,t ) = hR(x,t ) - 
h R (x, 0) is given by 

2 ~ (do~sOO(q,,w)sin2~t (78) 
<[ A h R ( X '  t)]2> ~ ~ L  n4=O j 2 

Using the small ~o and q approximation (70) we find after integration over 
ca) 

([AhR(x,t)]2)=L-~o (n~o ~ ( 1 - e x p [ - D o (  ~-ff n)2t]) ) (79) 

and, therefore, in the limit t-~ oo 

2 lira ([AhR x,t g(x,O;t)]2>>R 4r (80) ( ) ] 2 > = < < [  = 

which is equal to the space average of (75). This equality can be understood 
in the following way. Inthe limit t---> ~ the correlations between hR(t ) and 

2 = 2<h~>.  From the spectral decompo- hR(O ) are lost, and one finds Ah~R 
sition of <h~> and <g2> it is seen that (<g2(x)>>R =2<h2R>, hence 
Ah~ = << g2(x)>>~. 

The deviation from the average motion (ensemble average) is 

hE(x,t ) --- O(x,t) - <O(x,t)> (81) 

and the difference ~he(x, t)= he(x, t) - he(x,O) is thus given by 

iq x -- iwt AhE(X,t ) = u(2~L)-I/2~n f do~6Oq.~e " (e - I) (82) 

Note that the q = 0 mode is included, in contrast to Eq. (77). Therefore, 

2 fd,oSOO(q.,,o)sin~t (83) <[Ahr(x't)]2>= ~ ~n 



Forced and Overdamped Sine-Gordon Soliton Gas 437 

differs from Eq. (78) only in the q = 0 mode. Integration over to yields 

([Ahe(x,t)]2> = (4~r2u/L)t + ([Ahg(x,t)]2> (84) 

where we have also used the small to and q approximation (70). The first 
term in Eq. (84) arises from the diffusive motion of the center of gravity 
and becomes dominant for times larger than (L/2~r)2/Do. 

In the infinite chain the center of gravity exhibits no diffusive motion 
and hence <[AhR(x, t)]2> = <[Ahe(x , t)]2> = <[Ah(x, t)]2). For the infinite 
chain Eqs. (78) and (83) become 

<[Ah(x,t)]2>= f dtoS~176 to)sin2 t (85) 

with 

S~176 = O, to) = ( 1 / 2 ~ ) f d q  s~176 to) (86) 

We find in the limit to << un o 

S~176 -- O, to) = 2~-~r2(uno)~/2/to3/2 (87) 

and for to >> nou, 

s~176 = o, to) = 8 2(Uno)/to 2 (88) 

giving rise to the long-time behavior (nout >> 1) 

< [ A h ( x ,  t ) ]2> = 8'173/2(uno) l/2t l/2 (89) 

and a short-time behavior (nout << 1) 

( [ Ah (x, t) ]2> = 87r2(un0)t (90) 

It should be noted that the linearization of the hydrodynamic equations 
(40) and (41) is not inconsistent with h2(x,t) becoming large, since the 
linearization concerns only the derivatives Oh/St and 8h/8x. The connec- 
tion of our results to previous work (22-28) will be discussed at the end of the 
paper. 

4. STEADY-STATE SPREAD OF A FINITE CHAIN IN THE 
DIRECTION OF PARTICLE MOTION 

In this section we analyze the typical spread of a chain containing N 
kinks and N antikinks. As before, we assume periodic boundary conditions, 
O(x + L) = O(x). The position O of the chain at a point x relative to that at 
x = 0 depends on the number of kinks and antikinks between x = 0 and 
the point x [Eq. (71), x 0 = 0]. Neglecting small transient phonon displace- 
ments, the relative displacement is 2~r multiplied by the difference between 
the number of kinks and antikinks in the interval (0, x). 
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As has been shown in Section 2 for the driven case, all the possible 
distributions of kinks, for a given total number N are equally likely in the 
steady state [Eq. (4) and Section 2.5]. If instead of the driven case we 
consider the equilibrium case, we also find all configurations equally likely, 
since each configuration of N kinks has the same internal energy and is 
therefore associated with the same value of e -~/~. Whether the system is 
damped or not is irrelevant and does not affect the relative probability of 
various spatial patterns. 

We are therefore dealing with a straightforward combinatorial prob- 
lem. The probability that at x the chain is G kink steps ahead of the 
position at x = 0 is given by the probability of configurations that, out of a 
total of N kinks and N antikinks, place G more kinks than antikinks in the 
range (0, x). This in turn can be found by evaluating the probabilities p(r) 
for r kinks andp(s )  for s = r - G antikinks in the given range, multiplying 
these two probabilities, and summing over all r. The probability p(r) is 
given by the binomial distribution 

where ~ = x / L .  For large N, p(r) tends to a Gaussian distribution 

p(r)=[Z~rN~(1-1~)]- ' /Zexp(-(r  - N~)2/[2N~(1-gg)]} (92) 

and therefore 

P(G) = f p(r)p(r - G)dr= [47rN~(1 - ~) ] - t /2exp[  - Gz/aN~(1 - ~) ] 

(93) 
The variance of this distribution is given by (G  2) = 2 N ~ ( 1 -  ~). Noting 
that g = 2 ~ G  and N / L = n  o , we find ( g 2 ( x ) ) = 8 ~ 2 ( n 0 / L ) x ( L  - x ) ,  
which agrees with our result Eq. (75). For .the derivation of Eq. (93) we 
have kept N fixed. Of course N is different for different ensemble members. 
For large N these variations become unimportant because the distribution 
function PN [Eq. (20)] is peaked very sharply [see Eq. (29)]. 

Another derivation of Eq. (93) which is more complicated to describe, 
but is more instructive, treats this as a diffusion problem in which the x 
coordinate takes the place of time in an ordinary diffusion process. As x 
advances we at first have an equal probability for the occurrence of kinks 
and antikinks, and therefore diffuse away from G = 0. As we approach 
x.= L, however, the total number of kinks and antikinks must become 
equal. The position G thus influences the relative probabilities of kinks and 
antikinks and pushes G back to zero. The largest excursion occurs at 
x = L/2. Equation (93) thus confirms and extends our earlier results 
derived via the hydrodynamic equations. Equation (93) is not limited to the 
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driven case. The implication of these results will be discussed together with 
our previous results in the next section. 

5. D I S C U S S I O N  

We shall here first briefly remind the reader of some of our key results 
and then proceed to discuss the time evolution of the spread in space of a 
sine-Gordon chain, comparing our results to those of others. 

The equal probability for all spatial distributions of N driven kinks 
was the central result of Section 2. With this we were able to provide a 
more detailed derivation for the balance equations invoked in our earlier 
work. (2) The most significant result of the hydrodynamic approach is the 
existence of modes associated with a conserved quantity, the difference 
between the numbers of kinks and antikinks [Eqs. (57) and (59)]. This 
implies that the approach to the steady state is governed by slow modes 
decaying over a time proportional to L 2. Therefore, experiments investigating 
properties of the system in the thermodynamic limit L -~ oo have to be carried 
out over a very long time. 

The increase of the spatial dispersion of the chain with time has been 
discussed by several authors. (22-24) All of these authors consider the undri- 
ven system at equilibrium. The quantity investigated by these authors is 
([A0] 2) = ([0(x, t ) -  O(x, 0)]2). Schneider and Stoll (22) followed an under- 
damped sine-Gordon chain by computer simulation and found that 
([AO]2)~t 4/3. It is not clear to us whether they intended this to be 
characteristic of a finite chain or of the thermodynamic limit. For inde- 
pendent-particle diffusion one would have ([A0]2)~t ,  and the fact that 
they found motion which is faster than that deserves attention. By contrast, 
Imry and Gavish, (23) in much earlier work, studied the case in which the 
sinusoidal potential is absent and found ([AO]2)~t 1/2 in the thermody- 
namic limit. Physically this result, indicating motion slower than diffusion, 
can be understood as follows. A particle initially can move fairly easily and 
essentially diffusively. It cannot, however, move too far away from its 
neighbors, and to move further, a longer segment of the chain must be 
strongly excited. Excitation of the longer segments is associated with longer 
time constants and leads to a slower diffusion. The motion of long seg- 
ments of the chain is restrained by the stationary center of gravity of the 
infinite chain. This inhibits free diffusion. One might, therefore, expect 
similar qualitative behavior for the sine-Gordon chain in the case V 4= 0, 
i.e., one would expect the long-time behavior to be governed by an, 
exponent smaller than 1. 

In connection with the Schneider and Stoll simulation one may ask 
whether it was carried out for a long enough time to be significant or 
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Table I. 

Bennett, Buttiker, Landauer, and Thomas 

Mean Square Fluctuations 

m 

L infinite L finite 

Equilibrium ([AO]2)~t I/2 (or t?) ([~012)~t 
( g2)~x ( g2)~x[1 - (x/L)] 

([ahnf) < 

Driven ([A0]2)~t 2 ([A0]2)~t 2 
(g2)~x (g2)~x[l -- (X/L)] 

([Ah]2)~t 1/2 ([Ahn] 2) < 

([AhEl2)~t 

whether their initial conditions were reasonable. Reference 25 stresses the 
importance of the initial conditions. 

A recent analysis by Gunther and Imry (24) for an overdamped, undri- 
ven sine-Gordon chain yields ([AO]2)~t 1/2 or t in the thermodynamic 
limit, depending on assumptions made by them. In view of the dependence 
on these further assumptions, the result of this analysis, while suggestive, 
cannot be taken as a completely definite answer. 

The results of Refs. 23 and 24 are collected together with our results in 
Table I. We will now discuss the three quantities ([AO]2), ([Ah]2), and (g2)  
for each corner of the table separately. At equilibrium, in the thermody- 
namic limit, we include the results of Refs. 23 and 24 for ([A0] 2) in the 
table. The behavior of (gZ) follows from the limit of Eq. (93) as L ~ ce. 

In the undriven, finite chain the center of gravity exhibits normal 
diffusion, as we shall point out. There is no mechanism for long-term 
memory in our chain, even if underdamped. Particle velocities will change 
quickly, and on a longer time scale kinks will disappear and new ones will 
be nucleated. Thus if we choose a succession of very long time intervals we 
can be sure that the displacement of the center of gravity in each interval 
will be unrelated to the displacement in the preceding interval. That, in 
turn, assures us that the center of gravity, followed over a number of long 
intervals, will exhibit ordinary diffusion. A particular particle, followed 
over a sufficiently long period, must follow the center of gravity; Eq. (93) 
permits it to deviate only to a limited extent. Hence, if the particles diffuse 
along with the center of gravity we have ([AO]Z),~t, a result also found in 
Ref. 24. On the other hand, g, as defined in Eq. (71), measures the 
deviation of one particle with respect to another particle and h n measures 
the deviation of one particle from the center of gravity of the chain. 
Therefore in (g2)  and ([Ah]2n) the motion of the center of gravity does not 
show up. We have shown in Section 4 that the chain has a limited spatial 
spread, which in turn determines values for (g2)  and ([Ahn]2). 
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For the driven, finite or infinite chain ([A0] 2) is not a particularly 
interesting quantity, because it is simply governed by the average motion 
(O(t))  = 0o+ 47runot as analyzed in Ref. 2, whence ([A0]Z)~t  2. What 
takes the place of ~[A0] 2) as an interesting quantity in the driven case is the 
mean square amplitude ([Ahe] 2) of the displacement relative to the average 
motion. 

For the finite, driven chain ([AhR] 2) has been shown to tend to a finite 
value as t ~  ~ [Eqs. (75) and (80)] and at long times ( [Ahe]2)~t  exhibits 
the diffusive motion of the center of gravity, Eq. (84). 

For the infinite chain the behavior of (g2)  is given by Eq. (76), or the 
limit, as L ~ 0% of Eq. (93). In this case ([AhR] 2) = ([Ahe] 2) = ([Ah] 2) and 
we have shown that ([Ah] 2) increases a s  t 1/2 for long times [Eq. (90)]. The 
fact that we find for the driven sine-Gordon chain the same result as that of 
Imry and Gavish (23) can be understood from the field equation (62) for the 
coarse-grained sine-Gordon field O(x,t): if this equation is linearized 
around the average motion, O(x, t) = (O(t))  + 60(x, t), one finds 

026__O0 + 4un o ~ t  0 - u 2 0260 = 4~ru~ (94) 
Ot 2 Ox 2 

i.e., exactly the equation for a damped harmonic chain. 

NOTE ADDED IN PROOF 

Considerable progress has been made in the analysis of ([A0] 2) for the 
infinite chain at equilibrium since the time of submission of this paper. 
Newer results are summarized by M. B/ittiker and R. Landauer in Physics 
in One Dimension, J. Bernascoui and T. Schneider, eds. (Springer, Heidel- 
berg), to be published. 
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